Inhaltsverzeichnis Zertifikate / Prüfberichte Ordner EMIX Trading AG, Stand 01.02.2022

4.1	Angtai KN95
4.2	Chemipharma
4.3	Gaidien 3 Ply
4.4	Guanhua KN95
4.5	Naisian KN95
4.6	Pinyue KN95
4.7	SWORD 3 PLY
4.8	Teyin FFP2
4.9	YI Cheng KN95
4.10	Yeufon 3 Ply
4.11	Yeufon KN95

EC Certificate

Production Quality Assurance System

Directive 93/42/EEC on Medical Devices (MDD), Annex V (Devices in class I in sterile conditions, sterilised systems or procedure packs)

No. G2S 18 01 65303 013

Manufacturer:

Sword Xiantao Disposable Protective

Products Factory

Liukou Industrial Zone

433000 Xiantao City, Hubel Province PEOPLE'S REPUBLIC OF CHINA

EC-Representative:

Shanghai International Holding

Corp. GmbH (Europe)

Eiffestraße 80 20537 Hamburg GERMANY

Product

Category(ies):

Non Woven Cap, Non Woven Face Mask, Surgical Gown, Coverall, Non Woven Shoe Cover, Surgical Drape. Isolation Gown, Oversleeves, Disposable Examination Gloves, Wooden Tongue Depressor, Wooden Vaginal Spatula, Cotton Tip, Under Pad, Beard Cover, Surgical Kit, Protection Coat, Apron, Neck Paper, Dental Bib, Dental Kit.

First-aid Kit (Case), Patient Kit

The Certification Body of TÜV SÜD Product Service GmbH declares that the aforementioned manufacturer has implemented a quality assurance system for manufacture in accordance with MDD Annex V. This quality assurance system covers those aspects of manufacture concerned with securing and maintaining sterile conditions of the respective devices / device categories and conforms to the requirements of this Directive. It is subject to periodical surveillance. See also notes overleaf.

Report No.:

SH18298EXT01

Valid from:

2018-03-20

Valid until:

2023-03-19

2018-02-23

Stefan Preiß

TÜV SÜD Product Service GmbH is Notified Body with identification no. 0123

Page 1 of 2

EC Certificate

Production Quality Assurance System

Directive 93/42/EEC on Medical Devices (MDD), Annex V (Devices in class I in sterile conditions, sterilised systems or procedure packs) G2S 18 01 65303 013

Facility(ies):

Sword Xiantao Disposable Protective Products

Factory

Liukou Industrial Zone, 433000 Xiantao City, Hubei Province, PEOPLE'S REPUBLIC OF CHINA

EC-Declaration of Conformity

Manufacturer:

Sword Xiantao Disposable Protective Products Factory

Liukou Industrial Zone, 433000 Xiantao City, Hubei Province,

PEOPLE'S REPUBLIC OF CHINA

European Authorized

Shanghai International Holding Corp. GmbH (Europe)

Representative:

Eiffestrasse 80, 20537 Hamburg, Germany

Device Name and

Non Woven Face Mask

Variants:

UMDNS code:

12458

Classification:

I, Rule 1

Conformity

Directive 93/42/EEC Annex VII

Assessment Route:

We hereby to certify that under our sole responsibility the above mentioned product conforms to the procisions of the following EC Council Directives and Standards. All Supporting documentations are retained under the premises of the manufacturer.

DIRECTIVES

General applicable directives:

Medical Device Directive: COUNCIL DIRECTIVE 93/42/EEC concerning medical devices

(MDD 93/42/EEC), amended by 2017/47/EC.

Start of CE Marking:

2010-07-17

Place, Date of Issue:

V. 15 - 2000 02/42

Signature/Date:

Management

Mr Li Hanhua

Representative:

Sponsor:

Li Jun

Sword Xiantao Disposable Protective Products Factory Liukou Industrial Zone 433000 Xiantao City Hubei Province, Xiantao, 433000 PEOPLE'S REPUBLIC OF CHINA

Bacterial Filtration Efficiency (BFE) and Differential Pressure (Delta P) Final Report

Test Article:

Product Name: Non Woven Face Mask

Lot #2020030103

Study Number:

1285390-S01

Study Received Date:

07 Apr 2020

Testing Facility:

Nelson Laboratories, LLC

6280 S. Redwood Rd.

Salt Lake City, UT 84123 U.S.A.

Test Procedure(s):

Standard Test Protocol (STP) Number: STP0004 Rev 18

Deviation(s):

Summary: The BFE test is performed to determine the filtration efficiency of test articles by comparing the bacterial control counts upstream of the test article to the bacterial counts downstream. A suspension of Staphylococcus aureus was aerosolized using a nebulizer and delivered to the test article at a constant flow rate and fixed air pressure. The challenge delivery was maintained at 4.1 x 103 colony forming units (CFU) with a mean particle size (MPS) of $3.0 \pm 0.3 \, \mu m$. The aerosols were drawn through a six-stage, viable particle, Andersen sampler for collection. This test method complies with ASTM F2101-19 and EN 14683:2019, Annex B; with the exception of the higher challenge level, which may represent a more severe test.

The Delta P test is performed to determine the breathability of test articles by measuring the differential air pressure on either side of the test article using a manometer, at a constant flow rate. The Delta P test complies with EN 14683:2019, Annex C and ASTM F2100-19.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

The positive control average was out of specification per STP0004 Rev 18 section 6.1 which states, "The BFE positive control average shall be maintained at 1.7-3.0 x 103 CFU." Testing with a more severe challenge to the test articles represents a worse case. The sponsor accepted the use of the higher challenge; therefore, the results are considered valid at the testing conditions that occurred.

Test Side: Inside

BFE Test Area:

~40 cm²

BFE Flow Rate:

28.3 Liters per minute (L/min)

Delta P Flow Rate:

8 L/min 85 ± 5% relative humidity (RH) and 21 ± 5°C for a minimum of 4 hours

Conditioning Parameters:

Test Article Dimensions:

~170 mm x ~167 mm

Positive Control Average: 4.1 x 103 CFU

Negative Monitor Count:

<1 CFU

MPS: 2.7 µm

nelsonlabs.com

James W. Luskin

Study Completion Date

sales@nelsonlabs.com

FRT0004-0001 Rev 22 Page 1 of 2

Study Number 1285390-S01 Bacterial Filtration Efficiency (BFE) and Differential Pressure (Delta P) Final Report

Results:

a deposit of the form of the supplementary of good in concentrated to the last of the contrated to	and the said providing of the said from the said of the said the said of the s			
Test Article Number	Percent BFE (%)			
	>99.9			
2	in ≥90.9			
3.	≥99.9			
4	99.9			
5	>99.9			

Test Article Number	Delta P (mm H ₂ O/cm ²)	Delta P (Pa/cm²)
The state of the s	5.6	54.6
2	54	52.6
3	5.3	51.8
	52	50.8
.5	5.7	55.6

$$\%BFE = \frac{C - T}{C} \times 100$$

The filtration efficiency percentages were calculated using the following equation: C = Positive control average $\% \textit{BFE} = \frac{\mathcal{C} - T}{\mathcal{C}} \times 100$ C = Positive control average T = Plate count total recovered downstream of the test article Note: The plate count total is available upon request

Sponsor: Li Jun Sword Xiantao Disposable Protective Products Liukou Industrial Zone Xiantao City, Hubei Province 433000 PEOPLÉ'S REPUBLIC OF CHINA

Synthetic Blood Penetration Resistance Final Report

Test Article:

Product Name: Non Woven Face Mask

Lot #2020030103

Study Number:

1285388-S01

Study Received Date:

07 Apr 2020

Testing Facility:

Nelson Laboratories, LLC

6280 S. Redwood Rd.

Salt Lake City, UT 84123 U.S.A.

Test Procedure(s):

Standard Test Protocol (STP) Number: STP0012 Rev 09

Deviation(s):

Summary: This procedure was performed to evaluate surgical facemasks and other types of protective clothing materials designed to protect against fluid penetration. The purpose of this procedure is to simulate an arterial spray and evaluate the effectiveness of the test article in protecting the user from possible exposure to blood and other body fluids. The distance from the target area surface to the tip of the cannula is 30.5 cm. A test volume of 2 mL of synthetic blood was employed using the targeting plate method.

This test method was designed to comply with ASTM F1862 and ISO 22609 (as referenced in EN 14683:2019 and AS4381:2015) with the following exception: ISO 22609 requires testing to be performed in an environment with a temperature of 21 ± 5°C and a relative humidity of 85 ± 10%. Instead, testing was performed at ambient conditions within one minute of removal from the environmental chamber held at those parameters.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Number of Test Articles Tested: 32

Number of Test Articles Passed: 30

Test Side: Outside

Pre-Conditioning: Minimum of 4 hours at 21 ± 5°C and 85 ± 5% relative humidity (RH) Test Conditions: 20,3°C and 22% RH

Results: Per ASTM F1862 and ISO 22609, an acceptable quality limit of 4.0% is met for a normal single sampling plan when ≥29 of 32 test articles show passing results.

Test Pressure: 120 mmHg (16.0 kPa)

Synthetic Blood Penetration Test Article Numbe None Seen 1-9, 11-19, 21-32

Study Director

James W. Luskin

Study Completion Date

nelsonlabs.com

sales@nelsonlabs.com

FRT0012-0002 Rev 13 Page 1 of 1

Sponsor: Li Jun Sword Xiantao Disposable Protective Prod Liukou Industrial Zone 433000 Xiantao City Hubei Province PEOPLE'S REPUBLIC OF CHINA

Xantao, 433000 CHINA

Microbial Cleanliness (Bioburden) of Medical Masks Final Report

Test Article:

Product Name: Non Woven Face Mask

Lot No.:2020030103

Study Number.

1285389-501

Study Received Date:

07 Apr 2020.

Testing Facility:

Nelson Laboratories, LLC

6280 S. Redwood Rd.

Test Procedure(s):

Salt Lake City, UT 84123 U.S.A. Standard Test Protocol (STP) Number:

STP0036 Rev 15

Customer Specification Sheet (CSS) Number: 202001633 Rev 01

Deviation(s): None

Summary: The testing was conducted in accordance with EN 14683:2019, with the exception of approximate volumes of eluent used when performing the extraction procedure and a temperature range of 30-35°C used for aerobic incubation.

When bioburden results are calculated using a software program, manual calculations may differ slightly due to rounding. The counts determined on products are colony forming units and may not always reflect individual microorganisms. The sponsor performs any statistical analysis and determines the acceptable limits. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Results:

Unit Number	Weight (g)	Aerobic	Fungal	Total Bioburden (CFU/mask)	Total Bioburden (CFU/g)
144	3.8	<3	<3	<5.9	<1.5
2	3.8	<8	48	<6.0	<1.6
3	3.9	er ≤3	<3	_ <5.7	<1.5
4	3.8	<3	<8	<6.1	<1.6
5	4.0	43	<3	₹5.7	<1.4
Recovery Efficiency		NAME OF THE	UTD ^a		120 100

No Organisms Detected UTD = Unable to Determine

Note: The results are reported as colony forming units per test article.

UTD due to zero count on the first rinse. An alternative method or inoculated product recovery efficiency is recommended.

Carl Danielson electronically approved for

Study Director

Robert Putnam

21 Apr 2020 16:11 (+00:00) Study Completion Date and Time

nelsonlabs.com

sales@nelsonlabs.com

FRT0036-0010 Rev 10

Method Suitability:

Percentage Organism

Bacillus atrophaeus

116%

Test Method Acceptance Criteria: If applicable, anaerobic controls are acceptable for the bioburden test results. The number of masks to be tested shall be a minimum of 5 or more to meet an acceptable quality level of 4%. The bioburden of the medical mask shall be < 30 CFU/g tested.

Procedure:

Positive Controls/Monitors: Bacillus atrophaeus

Peptone Tween Extract Fluid:

Extract Fluid Volume: ~300 mL

Orbital Shaking for 15 minutes at 250 rpm Extract Method:

Membrane Filtration Plating Method: Potato Dextrose Agar Agar Medium:

Tryptic Soy Agar

Exhaustive Rinse Method Recovery Efficiency:

Plates were incubated 3 days at 30-35°C, then enumerated. Aerobic Bacteria:

Plates were incubated 7 days at 20-25°C, then enumerated.

CERTIFICATE

No. QS5 065303 0016 Rev. 00

Certificate Holder:

Sword Xiantao Disposable Protective

Products Factory Liukou Industrial Zone

433000 Xiantao City, Hubei Province PEOPLE'S REPUBLIC OF CHINA

Certification Mark:

Scope of Certificate:

Production and Distribution of Disposable / Re-Usable (Antistatic) Cap, Face Mask, Gloves, Cover, Neck Paper, Gowns and Accessories, Apron, Coverall, Uniform, Pajama, Bags, Slippers, Sheets, Drape, Under Pad, Bib, Cotton Tip

Standard(s):

ISO 9001:2015

The Certification Body of TÜV SÜD America Inc. certifies that the company mentioned above has established and is maintaining a quality management system that meets the requirements of the listed standards.

Report No.:

TAM / SH1929813

Effective Date:

2020-09-18

Expiry Date:

2023-02-26

Page 1 of 1

Date of Issue: 2020-10-12

- The Frail

Tina Israel

Manager, US Certification Body,

Medical and Health Services

TÜV SÜD America Inc. • 10 Centennial Drive Ste 207 • Peabody, MA 01960 USA • www.tuysud.com

TIR/®

Certificate

No. Q6 065303 0015 Rev. 00

Holder of Certificate: Sword Xiantao Disposable Protective

Products Factory

Liukou Industrial Zone

433000 Xiantao City, Hubei Province PEOPLE'S REPUBLIC OF CHINA

Facility(ies): Sword Xiantao Disposable Protective Products Factory

Liukou Industrial Zone, 433000 Xiantao City, Hubei Province,

PEOPLE'S REPUBLIC OF CHINA

Certification Mark:

Scope of Certificate: Production and Distribution of

Non Woven Cap, Non Woven Face Mask, Surgical Gown, Coverall, Non Woven Shoe Cover, Surgical Drape, Isolation Gown, Oversleeves, Disposable Examination Gloves, Wooden Tongue Depressor, Cotton Tip, Wooden Vaginal Spatula, Under Pad, Single Use Dental Kit, Single Use Surgical Procedure Packs, Dental Bib, Medical Apron, Beard Cover, Protection Coat, Neck Paper, First-aid Kit(Case).

Patient Kit

Applied Standard(s): EN ISO 13485:2016

Medical devices - Quality management systems -

Requirements for regulatory purposes

(ISO 13485:2016) DIN EN ISO 13485:2016

The Certification Body of TÜV SÜD Product Service GmbH certifies that the company mentioned above has established and is maintaining a quality management system (excluding subclause 7.3), which meets the requirements of the listed standard(s). See also notes overleaf.

Report No.:

TAM / SH1929813

Valid from:

2020-03-17

Valid until:

2023-02-28

Date,

2020-03-17

Christoph Dicks

Head of Certification/Notified Body

